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Cloud Computing

Program or application on
connected server(s)

rather than locally - \/ﬁ
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Confidentiality of your data in the Cloud?

The Cloud knows all your data



Secure channel?

The Cloud knows all your data

Confidentiality of your data in the Cloud?

Confidentiality of the channel?
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Alice
0x93ac584f00. . . 0ab369

Bob

Eve
7‘?‘?

To: |

(scam)

Alice’s number:
444 264 2999



Encryption

0x93ac584f00. . . 0ab369

Eve

777

“'
scam

They need to share a secret key &=!

Alice’s number:
444 264 2999
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Key Exchange (Diffie-Hellman)
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Key Exchange (Diffie-Hellman)

Public parameters: G = (g) or order p
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Key Exchange (Diffie-Hellman)

Public parameters: G = (g) or order p

Alice: g®

Bob: gb

Eve
@
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Random a < Z, lll

O = (gb)a - gab
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Secure channel? The Cloud knows all your data

We assume communication with the Cloud is secure
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Secure channel v The Cloud knows all your data

We assume communication with the Cloud is secure

This is the current situation



{Enc(m,)}L

The Cloud knows nothing about your data

For confidentiality, we use encryption



{Enc(mz)}l

{Enc(m;)}ier

For confidentiality, we use encryption X
Now... limited to ' ‘




{Enc(m,)}L
{Enc(m;) }ier %

Storage/Retrieval

The Cloud knows nothing about your data

For confidentiality, we use encryption
Now... limited to

This is not even what Dropbox/Google Drive/Microsoft OneDrive/Amazon
S2/iCloud Drive/etc. are doing
Allow access control and sharing, interaction with whole app universe, etc.



[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting
for interesting operations, 2

Enable unlimited computation on encrypted data
(w.l.o.g. m;’s are bits and f Boolean circuit)

PKEHE
® {Encrre(m) }i
l EncFHE(f(mown,mi))

<

(public homomorphic computations)



Theoretical improvements of the DGHV scheme

Packing several plaintexts in one ciphertext [CCKLL.TY-EC13]
Adaptation of a technique to manage noise growth [CL.T-PKC14]

Exponential improvement!

Fine analysis of the constraints to select concrete parameters

Implementations of the schemes and benchmark on f = AES
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3. Cryptographic Multilinear Maps

4. Conclusion



DGHYV Scheme [vDGHV10]

» Public error-free element: x, = ¢, - p
» Secret key sk=p
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DGHYV Scheme [vDGHV10]

» Public error-free element: x, = ¢, - p
» Secret key sk=p

» Ciphertext for me {0,1}:

c=q-p+2-r+m

where g large random,  small random

e= L1

» Decryption of c:

m=(cmod p) mod 2
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How to Add and Multiply Encrypted Bits:
Add/Mult two near-multiples of p gives a near-multiple of p

a=q-p+2-n+m, =G p+2-1,+m

ateo=p(q+q)+2-(rn+n)+m+m

mod 2—m; XORm,

a-=paqtagp—qq)+2-Crrn+rnm+rm)+m -mm

mod 2—m; ANDm,



How to Add and Multiply Encrypted Bits:
Add/Mult two near-multiples of p gives a near-multiple of p

a=q-p+2-n+m, =G p+2-1,+m

ateo=p(q+q)+2-(rn+n)+m+m

mod 2—m; XORm,

a-=paqtagp—qq)+2-Crrn+rnm+rm)+m -mm

mod 2—m; ANDm,
E//%//
C/I—m N\
=/ o~ /T T
e

Correctness for multiplicative depth of L: log, p=n~2L-(p +1)
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Proved equivalent to the computational AGCD problem of [vDGHV10] in
[CLT-PKC14]
Proofs are simpler!
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: Decisional Approximate-GCD problem [CCKLIL.TY-EC13]

Proved equivalent to the computational AGCD problem of [vDGHV10] in
[CLT-PKC14]
Proofs are simpler!

: encrypt vectors of bits instead of single bits [CCKLL. TY-EC13]

Reduce asymptotic overhead per gate
Useful for parallelization

Heuristic method modeling noise growth [[.P13]
Exponential improvement with scale-invariance technique [CL.T-PKC14]

Benchmark on AES circuit [CCKLI. TY-EC13,CI.T-PKC14]



Semantic Security of the Scheme

Consider
D={q-p+1:q9[0,q),—[0,2")}

Security of the scheme based on:

Given x, = ¢, - p and polynomially many x; € D, decide whether z is uniformly
generated in [0, xy) or in D
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Semantic Security of the Scheme

Consider
D={q-p+7:q<10,q,), <[0,2")}

Security of the scheme based on:

Given x, = ¢, - p and polynomially many x; € D, decide whether z is uniformly
generated in [0, xy) or in D

Semantic security of the scheme:
» Recall thatc=¢g-p+2r+m
» Since gcd(2, g9) =1, c=2-( (g/2mod qp)- p+ 7 )+mmod(q0-p)

indistinguishable from uniform mod x,

» Therefore ciphertext of m indistinguishable from uniform

17 /41



In one ciphertext, encode ¢ plaintexts

Addition and Multiplication: in parallel
over the ¢ slots

[ta]ua[s]

]

[ ee]vs]
x |V1|V2|V3

[v¢]

‘wl ‘U)z‘?l}g‘

[14]




In one ciphertext, encode ¢ plaintexts

Addition and Multiplication: in parallel g ]
over the ¢ slots ] w = el |

U2 | Uy us Uy | Uy
Permutations between the slots (algebraic
structure)




Batching (1)
» In one ciphertext, encode ¢ plaintexts

» Addition and Multiplication: in parallel
over the /¢ slots

» Permutations between the slots (algebraic
structure)
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Permutations between the slots (algebraic  fwiws[us]

[14]

structure)

Public element x, = ¢, - p
Ciphertext of me {0, 1}:
c=q-p+2r+m

cmodp=2r+m ; cmod gy = q
~—

uniform in [0, gq)

-p+2r+mmod gy



[ta]ua[s] [

* [n]ve]vs] [v¢]

Permutations between the slots (algebraic  fwiws[us] ]
structure)

Public element x, = ¢, - p
Ciphertext of me {0, 1}:
c=q-p+2r+m

cmodp=2r+m ; cmod gy = q -p+2r+mmod g
~—

uniform in [0, gq)
We can write

c= CRTqO,p(c/,Z + m)



Batching (2): Extend the Chinese Remainder Theorem

c=CRT,, (d, 2r+m)

» Generalization to several slots is easy!
» Ciphertext of in=(m,, ..., m;) €{0,1}":

c=CRT q,2r +m, ...,21‘/+m,g)

qorP1-- PI(
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Batching (2): Extend the Chinese Remainder Theorem

c=CRT,, (d, 2r+m)

» Generalization to several slots is easy!
» Ciphertext of in=(m,, ..., m;) €{0,1}":

c=CRT q,2r+my, ..., 21 +m,;)

qo,m,-mm(

» Decryption:
m;=(cmod p;) mod 2
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c= CRTqO,p(c/, 2r+ m)

Generalization to several slots is easy!
Ciphertext of /= (m,, ..., m;) € {0,1}":

c=CRTy ... m(q’,z +my, ..., 2 +mg)

Decryption:
m; =(cmod p;) mod 2

Thanks to the structure of the CRT:

Addition: the addition is performed modulo each p; similarly to DGHV
Multiplication: the multiplication is performed modulo each p; similarly to
DGHV



Security of the Batch Scheme BDGHV

Given xy = ¢ - p and polynomially many x; € D={q- p+: q—[0, qo), 7 —[0,2P)},
decide whether zis uniformly generated in [0, xy) or in D
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Security of the Batch Scheme BDGHV

Given xy = ¢ - p and polynomially many x; € D={q- p+: q—[0, qo), 7 —[0,2P)},
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Sketch:
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Security of the Batch Scheme BDGHV

Given xy = ¢ - p and polynomially many x; € D={q- p+: q—[0, qo), 7 —[0,2P)},
decide whether z is uniformly generated in [0, xp) or in D

Sketch:

Given xy = ¢y - p1 - p¢ and polynomially many x; € Dy = {CRT; ,,.(q, ..., 7;,...) : =0, qo), 7; = [0,2°)}, decide whether
zis uniformly generated in [0, xy) or in Dy

> For { =1, the above problem is the (Error-Free) Decisional Approximate-GCD
> Let Abe an adversary having adv. € to solve this latter problem
> Denote D; the distribution of elements of the form

CRT g prop (@ e 755y 77)
{—irandom
> 3jo s.t. Ahas advantage > €/ to distinguish D; _; and D;,
> With proba 1/¢, you can place p at the position j, (generate the { —1 other p;’s yourself), and you use the

challenge z for this slot
20/ 41



Security of the Batch Scheme BDGHV

Given xy = ¢ - p and polynomially many x; € D={q- p+: q—[0, qo), 7 —[0,2P)},
decide whether zis uniformly generated in [0, xy) or in D

Security based on same problem as before!
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Advantages of the Batch Variant

» Parallelization:

‘ullug‘ug‘ ‘ul‘

+ ] 7]

2] [

» Use the fact that g>> p to pack elements

7 bits

P bits

=1 [ 1

v p bits

> (Also asymptotic reduction of overhead per gate with permutations)

With essentially same complexity costs and same security, operations over
¢ > 1 bits!
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Mitigating Noise Growth: Scale-Invariance

» Even with batch variant, exponential growth of the noise
J

://gw
|://
[

//
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Even with batch variant, exponential growth of the noise
(]

TN
/

-
:/E\M//J//
o 1

J
New technique introduced by Brakerski: scale-invariance

Instead of encrypting in the LSB of c mod p, encrypt in the MSB
Adapted for DGHV [CI.T-PKC14]

(v — ) bits n bits (v — n) bits 7 bits

‘ - ‘ 5 [ma - @ ‘ 5 [ma =
v . - -
p* bits p bits »* bits p bits
(2~ — 1) bits  bits

VSB | 7 ]

—_—

(p+ p* +m) bits

Convert preTm e
n bi

(v — 1) bits




Contributions to Scale-Invariance

» Design of a new scheme based on Brakerski’s idea
» Quantification of the noise growth:

Let ¢; and ¢, be ciphertexts of m;, and m, with noises < 2°. Then
¢; = Convert(c, - ¢,)

is a ciphertext of m; AND m, with noise < 2°*? for a fixed 6 = 0(log, A)
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Contributions to Scale-Invariance

» Design of a new scheme based on Brakerski’s idea
» Quantification of the noise growth:

Let ¢; and ¢, be ciphertexts of m;, and m, with noises < 2°. Then
¢; = Convert(c, - ¢,)

is a ciphertext of m; AND m, with noise < 2°*? for a fixed 6 = 0(log, A)

» Noise growth is linear in multiplicative depth
» Correctness for multiplicative depth of L:

log, p=n~p+06-L
instead of ~ 2L p of the previous scheme

23 /41



Fully Homomorphic Encryption Scheme

» Only way to get fully homomorphic encryption: select parameters to

evaluate decryption circuit | Bootstrapping

» If c=Enc(m), run homomorphically Dec:
Cresult = Enc(Dec(c)) = Enc(Dec(Enc(m))) = Enc(m)

» select parameters s.t. one can do additional homomorphic operation(s)
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Only way to get homomorphic encryption: select parameters to

evaluate decryption circuit | Bootstrapping

If c=Enc(m), run Dec:

Cresult = (Dec(c)) = (Dec(Enc(m))) = (m)

select parameters s.t. one can do additional homomorphic operation(s)

Adaptation to batch scheme BDGHV in [CCKLI.TY-EC13] and to
scale-invariant scheme in [CI. T-PKC14]

for scale-invariant scheme:
linear noise growth = bootstrapping not required for many levels



Benchmark on a nontrivial, not astronomical circuit: AES

Pkene, Encrre (k)

{AESk(m;)}; (4[> 77777
' ' Encrre(f(mo, ..., ms)) %

t {Encene(mi)}i
_____ <_|

(public homomorphic computations)



Implementations

» Benchmark on a nontrivial, not astronomical circuit: AES
» Batch DGHV (with bootstrapping) [CCKLIL.TY-EC13]

| A | r | ¢ | Mult | Bootstrapping | AES | Relative time

72 | 29MB | 544 || 0.68 s 225s 113h 768 s

80 | - - - - - -
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Implementations

» Benchmark on a nontrivial, not astronomical circuit: AES
» Batch DGHV (with bootstrapping) [CCKLIL.TY-EC13]

| A | r | ¢ | Mult | Bootstrapping | AES | Relative time |
72 | 29MB | 544 || 0.68 s 225s 113 h 768 s
80| - | - | - - - -
» Scale-Invariant DGHV (without bootstrapping) [CI.T-PKC14]
2| 7y | € | Mult| Convert | AES | Relative time
72 | 2MB 569 0.1s 33s 3.6h 23s
80 | 4.5MB | 1875 || 0.3s 277s 102 h 195s

» Lattice-Based Scheme [GHS12]
| A | Ciphertextsize | ¢ || AES | Relative time |

/80| 03MB [720] 65h| 300s |

25 /41



Assessment of advantages/disadvantages of existing schemes

Optimizing cloud communications

Prototypes of real-world applications?

FHE outside “noisy” framework?



Outline

1. Introduction

2. Fully Homomorphic Encryption

3. Cryptographic Multilinear Maps

4. Conclusion
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“The DDH assumption is a gold mine” (Boneh, 98)
Given (g% g?, z) hard to decide if z= g’ or random
We “hide” values a;’s in g%
Easy to compute linear/affine functions + check if @; = 0 (and constants)
Hard to compute/check quadratic functions
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“The DDH assumption is a gold mine” (Boneh, 98)
Given (g% g?, z) hard to decide if z= g’ or random
We “hide” values a;’s in g%
Easy to compute linear/affine functions + check if @; = 0 (and constants)
Hard to compute/check quadratic functions

Beyond DDH: Bilinear Maps
Give possibility to compute quadratic functions in the exponent
but computing cubic is hard...
Lots of new capabilities

i.e. give possibility to compute polynomials in the exponents,
but no more?

Considered by [BS03]: very fruitful, but unlikely to be constructed similarly
to bilinear maps



MMaps vs. HE

» Wanted: add and multiply (bounded # times) encodings... = looks like HE

| Multilinear Maps | Homomorphic Encryption |
Encoding e, = g* Encrypting ¢, = Enc(a)
Computing low-degree polynomials | Computing low-degree polynomials
of the e,’s is easy of the ¢,’s is easy
Can test if encoding of 0 Cannot test anything...
...unless you know the secret key sk
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MMaps vs. HE

» Wanted: add and multiply (bounded # times) encodings... = looks like HE

| Multilinear Maps | Homomorphic Encryption |
Encoding e, = g* Encrypting ¢, = Enc(a)
Computing low-degree polynomials | Computing low-degree polynomials
of the e,’s is easy of the ¢,’s is easy
Can test if encoding of 0 Cannot test anything...
...unless you know the secret key sk

Can we modify the existing HE schemes to get
MMaps?

» First construction of approximate MMaps: Garg, Gentry, Halevi in 2013
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Our Contributions [CLT-C13]

1. Start from (B)DGHV and transform it into approximate MMaps!

> Only 1 other known construction of MMaps: the initial one

» All (k + 1)-degree functions seem hard
» Some attacks in the original scheme have no equivalent here

2. Optimizations and (first!) implementation

» Open-Source implementation of multilinear maps (Github)

» Implementation of a 26-partite Diffie-Hellman Key Exchange

30 /41



Ciphertext of me {0,...,g—1} using DGHV:

c= CRqulp(q, g-r+m)

Problem: g was used as a mask to hide everything
But we need a deterministic extraction procedure to construct protocols
seems hard to cancel a large random

If we remove it, no more encryption... c=g-r+meZ!
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Ciphertext of /€ {0,...,g—1}* using BDGHV without mask:

Problem #1: (Again) g was used as a mask to hide everything
Let us remove it!
Seems less secure (does not rely on Approximate-GCD anymore)? How can
we exploit that?

Problem #2: We don’t know the p;’s, how can we sample?



Encoding of a random /€ {0,...,g— 1}

c=CRT, ., (gnrn+m,.., g +mg)=le~

€S

Problem #1: (Again) g was used as a mask to hide everything
Let us remove it!
Seems less secure (does not rely on Approximate-GCD anymore)? How can
we exploit that?
Problem #2: We don’t know the p;’s, how can we sample?
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Encoding of a random /€ {0,...,g— 1}

Problem #1: (Again) g was used as a mask to hide everything
Let us remove it!
Seems less secure (does not rely on Approximate-GCD anymore)? How can
we exploit that?
Problem #2: We don’t know the p;’s, how can we sample?
Define random encodings x;’s, and compute a subset sum of them
We don’t know anymore what is the value of 7, but we don’t often need it in
protocols
Problem #3: Fuzzy threshold for easy vs. hard?
Because we don’t know exactly how the noise increases
Use a secret mask z with x} = x;/2!



Multiplication of encodings with masks z’ (i.e. level-i) and 7/ (i.e. level-j)
= encoding with mask z'/ (i.e. level-(i+ j))



.....

Multiplication of encodings with masks z’ (i.e. level-i) and 7/ (i.e. level-j)
= encoding with mask z'/ (i.e. level-(i+ j))
Zero-test procedure: does a level-x encoding encodes 02



Multiplication of encodings with masks z’ (i.e. level-i) and 7/ (i.e. level-j)
= encoding with mask z'/ (i.e. level-(i+ j))
Zero-test procedure: does a level-x encoding encodes 02

Need to cancel z¥ but cannot reveal z!

Define ,
pa=Y hi-(Z-g  mod pi)-| |py
i=1 J#



Multiplication of encodings with masks z’ (i.e. level-i) and 7/ (i.e. level-j)
= encoding with mask z'/ (i.e. level-(i+ j))
Zero-test procedure: does a level-x encoding encodes 02

Need to cancel z¥ but cannot reveal z!

Define ,
pa=Y hi-(Z-g  mod pi)-| |py
i=1 J#i
Compute w = c¢- p,, mod X

1 ifwkx
0 otherwise

isZero(w) = {



_ =S
“ €S
and ,
pa=D 12 -g " mod p)-| [,
=1 i
If c encodes 0, we have
¢
C'Pztmdeo:Z : P Xy = l_[ pi
i=1 Vil i=1,..,n

If c encodes i # 0, we have
¢
¢ pymod xy = ( +mi'g_1m0dpi)'l_[l7j“xo
—1 i

=



and

-
If cencodes 0, we have
4
C'pztmOdXOZE | |I9j<<xo: | | pi
i=1 j7éi i=1,..,n
If c encodes 7 75 6’ we haJ Actually we need distinct g;’s to avoid another attack |

4

¢ pymod x, = (ri+m-g mOdPi)'l_[PjNXO
1 JAi

=
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Implementation of a 26-partite E
one-round Diffie-Hellman key
exchange

Public parameters of multilinear
maps for k =25 levels

Total time: < 5 min IE




Explosion of multilinear maps in cryptography (and of obfuscation, built
on multilinear maps)

Improve the practicality of multilinear maps
akin to what has been done for FHE, and beyond

Applications with reasonable number of multilinearity level

Cryptanalysis to build confidence in the multilinear maps proposals



Introduction

Fully Homomorphic Encryption

Cryptographic Multilinear Maps



Contributions to Fully Homomorphic Encryption

/5 On the Minimal Number of Bootstrappings in Homomorphic
Circuits.
L., Paillier [WAHC 2013]

‘ Batch Fully Homomorphic Encryption over the Integers.
Cheon, Coron, Kim, Lee, L., Tibouchi, Yun = [EUROCRYPT 2013]

S

‘ Scale-Invariant Fully Homomorphic Encryption over the Integers.

Coron, L., Tibouchi [PKC 2014]

/5 A Comparison of the Homomorphic Encryption Schemes FV and
YASHE.

L., Naehrig [AFRICACRYPT 2014]

Implementation: https://github.com/tlepoint/homomorphic-simon
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Contributions to Multilinear Maps

5 Practical Multilinear Maps over the Integers.

Coron, L., Tibouchi [CRYPTO 2013]

\ Implementation: https://github.com/tlepoint/multimap

39 /41


https://github.com/tlepoint/multimap

Other Areas

» Lattice-Based Signature

‘ Lattice Signatures and Bimodal Gaussians.

Ducas, Durmus, L., Lyubashevsky [CRYPTO 2013]
m Implementation: http://bliss.di.ens.fr

» White-Box Cryptography

/5 Two Attacks on a White-Box AES Implementation.
L., Rivain, De Mulder, Roelse, Preneel [SAC 2013]
<7

,‘ White-Box Security Notions for Symmetric Encryption Schemes.
Delerablée, L., Paillier, Rivain [SAC 2013]

40/ 41


http://bliss.di.ens.fr




4 tlepoint — ssh-di-/dev/pts/2 ~ — ssh

2023

—

mhm

r

nI‘no:nnun

ssh — 141x34
] 9 [ ]l 13 [ %]
1 10 [ 20.0%] 14 [ 1
1 11 [ 20.0%] 15 [ ]
1 e 00.0%] 16 [ ]
5] Tasks: 51, 104 tr 254 kthr; 17 running
5 A

+9.99 16.03 16.00
Uptime: 2 days, ©03:49:23

NO RAM LEFT ON THE COMPUTER

(generation of public parameters)

lepoint
lepoint
lepoint
lepoint
lepoint
root
root
ntp
snmp
daemon
root

LB

o

20008
205M
205M

21600

47704
8272
130M

4632

2852

S
S
S
S
S

S
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]
.0
(]
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.0

OO0

.0

Q:

OWe OO W

.07
F1Help F2Setup F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice

./multimap24
./multimap24
./multimap24
./multimap24
htop
/opt/dell/srvadmin/sbin/dsm_sa_datamgrd
/opt/dell/srvadmin/sbin/dsm_sa_datamgrd

/usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 106:114

/usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd
portmap
/opt/dell/srvadmin/sbin/dsm_sa_snmpd
#FoKill F10Quit
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